The role of point-to-point speed enforcement systems to prevent highway accidents: evidence from Italy

Flavio Bazzana ¹ Mattia Borsati ¹ Michele Cascarano ^{1,2}

¹University of Trento

²Bank of Italy

SIET

XX Scientific Meeting, "Mobility and the city: policies for sustainability"

June 21, 2018

Overview

- Introduction
 - Safety Tutor system
 - Literature review
 - Dataset & Descriptive trends
- Model & Estimation results
 - OLS estimation results
 - IV estimation results
- Final remarks
 - Conclusions
 - Drawbacks & To-Dos

Safety Tutor system

- Developed by Autostrade per l'Italia and the Traffic Police in 2004
- 320 point-to-point sites monitor 2 900 km of highways (considering both carriageways)
- It allows to determine the average speed of vehicles passing through two camera sites

Figure 1: A Safety Tutor site

Literature review

- Previous studies (within the Italian context) show encouraging positive findings on Safety Tutor effectiveness:
 - -27% injury rate, -50% mortality rate on Autostrade per l'Italia network after 12 months of operation (ASPI, 2007; Falsi, 2009)
 - -39% injury accidents on A56 Tangenzial di Napoli between 8 months pre and 8 months post installation in 2009 (Cascetta and Punzo, 2009)
 - -31% total accidents on an 80-km segment of A1 Milan-Naples motorway considering an analysis period from 2001 to 2009 (Montella et al., 2012)
 - -32% total accidents on A56 Tangenzial di Napoli analysing four weeks data between 2009 and 2011 (Montella et al., 2015)

Dataset

 To evaluate the effectiveness of Safety Tutor on reducing highway vehicle accidents on a substantial scale, we built a unique 15-year panel dataset (2001-2015) at motorway sectors level (56)

Table 1: Data and Sources

Variable	Variable definition	Source
ACCIDENTS	Number of total highway vehicle accidents that caused injuries	AISCAT
	or death to people	
INJURED	Number of injured people caused by vehicle accidents	AISCAT
<i>FATALITIES</i>	Number of deaths caused by vehicle accidents	AISCAT
DAILY_TRAFFIC	Average daily number of vehicles	AISCAT
HIGHWAY_LENGTH	Number of kilometers of highways	AISCAT
TUTOR_LENGTH	Number of kilometers of highways covered by Safety Tutor sites	ASPI
VEHICLES_AGE	Average age of circulating vehicle fleet (in years)	ISPRA
$ALCOHOL_PC$	Per capita ethanol consumption (in liters)	GHO

Figure 2: ACCIDENTS, INJURED, FATALITIES trends vs COVERAGE

Figure 3: Patterns in ACCIDENTS rates by treated and non-treated groups

Figure 4: Patterns in INJURED rates by treated and non-treated groups

Figure 5: Patterns in FATALITIES rates by treated and non-treated groups

Model specification

• To test the effectiveness of Safety Tutor on reducing highway vehicle accidents we regressed the following panel equation:

$$log\left(\frac{Y+1}{DAJLY_TRAFFIC} \times 10\,000\right)_{it} = \beta_0 + \beta_1 COVERAGE_{it-1} + BX + \alpha_i + \delta_t + \epsilon_{it}$$

$$(1)$$

- Y is our set of dependent variables: ACCIDENTS, INJURED, and FATALITIES.
- COVERAGE is the ratio between TUTOR_LENGTH and HIGHWAY_LENGTH
- X is a set of control variables: VEHICLES_AGE and ALCOHOL_PC

OLS: *log(ACCIDENTS)*

Table 2: OLS regressions with clustered standard errors. ***, **, and * denote significance at 1%, 5%, and 10% level

Dependent variable		log(ACC	CIDENTS)	
	(1)	(2)	(3)	(4)
lag(COVERAGE)	0.0511	-0.617***	-0.202***	-0.138**
	(0.149)	(0.0652)	(0.0583)	(0.0586)
$ALCOHOL_PC$,	,	0.125*** (0.0169)	,
VEHICLES_AGE			-0.0535*** (0.0162)	
Motorway sector	No	Yes	Yes	Yes
Year	No	No	No	Yes
Constant	2.493***	2.564***	2.000***	2.843***
	(0.0943)	(0.00695)	(0.240)	(0.0318)
Observations R^2	777	777	777	777
	0.000	0.165	0.412	0.463

OLS: log(INJURED)

Table 3: OLS regressions with clustered standard errors. ***, **, and * denote significance at 1%, 5%, and 10% level

Dependent variable		log(IN	JURED)	
	(1)	(2)	(3)	(4)
lag(COVERAGE)	0.219 (0.175)	-0.609*** (0.0724)	-0.184*** (0.0630)	-0.108* (0.0597)
$ALCOHOL_PC$	(512.5)	(0.0. = 1)	0.125***	(5.555.)
VEHICLES_AGE			(0.0171) -0.0583*** (0.0172)	
Motorway sector	No	Yes	Yes	Yes
Year	No	No	No	Yes
Constant	2.929*** (0.112)	3.017*** (0.00772)	2.491*** (0.254)	3.338*** (0.0400)
Observations R^2	777 0.006	777 0.135	777 0.353	777 0.421

OLS: log(FATALITIES)

Table 4: OLS regressions with clustered standard errors. ***, **, and * denote significance at 1%, 5%, and 10% level

Dependent variable		log(FAT)	ALITIES)	
	(1)	(2)	(3)	(4)
lag(COVERAGE)	-0.534** (0.230)	-1.088*** (0.108)	-0.523*** (0.124)	-0.440*** (0.139)
$ALCOHOL_PC$	()	()	0.247***	()
VEHICLES_AGE			(0.0341) 0.0144 (0.0361)	
Motorway sector	No	Yes	Yes	Yes
Year	No	No	No	Yes
Constant	-0.277***	-0.218***	-2.351***	0.238***
	(0.0940)	(0.0115)	(0.503)	(0.0596)
Observations	777	777	777	777
R^2	0.025	0.127	0.254	0.289

IV: Exclusion restriction & 1st Stage

• Instrument = $Dummy_{Year > 2004} \times Dummy_{ASPI_group}$

Figure 6: ASPI_group in 2011

Figure 7: Safety Tutor sites in 2011

IV: Exclusion restriction & 1st Stage

• Instrument = $Dummy_{Year > 2004} \times Dummy_{ASPI_group}$

Table 5: Progressive deployment of Safety Tutor sites by concessionaires

Concessionaires	TUTOR_LENGTH						
concessionan es	2005	2006	2007	2008	2009	2010	2011
Autostrade per l'Italia S.p.A.	107.2	339.4	543.1	869.6	1072.0	1240.2	1 276.8
Tangenziale di Napoli S.p.A.	0.0	0.0	0.0	0.0	9.4	9.4	9.4
Autostrada Torino-Savona S.p.A.	0.0	0.0	0.0	0.0	0.0	29.2	29.2
Soc. Autostrada Tirrenica S.p.A.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Strada dei Parchi S.p.A.	0.0	0.0	121.2	121.2	121.2	121.2	121.2
Autostrade Meridionali S.p.A.	0.0	0.0	0.0	0.0	0.0	13.7	13.7
Soc. Italiana Traforo Monte Bianco S.p.A.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Raccordo Autostradale Valle d'Aosta S.p.A.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total ASPI_GROUP (A)	107.2	339.4	664.3	990.8	1 202.6	1 413.7	1 450.3
Autovie Venete S.p.A.	0.0	0.0	0.0	0.0	0.0	0.0	104.1
Aut. Brescia-Verona-Vicenza-Padova S.p.A.	0.0	0.0	0.0	37.2	37.2	37.2	47.6
Total OTHERS (B)	0.0	0.0	0.0	37.2	37.2	37.2	151.7
Total (A+B)	107.2	339.4	664.3	1 028.0	1 239.8	1 450.9	1 602.0

In the 2011, the 90.5% of Safety Tutor sites were installed within $\textit{ASPI_group}$

IV: 1st Stage & Reduced Form

Table 6: 1st Stage and Reduced Form regressions with clustered standard errors. ***, **, and * denote significance at 1%, 5%, and 10% level

1 st Stage	Dependent variable	lag (COVERAGE)	lag (COVERAGE)	lag (COVERAGE)
	lag(INSTRUMENT)	0.211***	0.211***	0.211***
	,	(0.042)	(0.042)	(0.042)
	R^2	0.342	0.342	0.342
Reduced	Dependent variable	log	log	log
Form	<u>'</u>	(ACCIDENTS)	(INJURED)	(FATALITIES)
	lag(INSTRUMENT)	-0.0783	-0.0718	-0.0274
		(0.0512)	(0.0498)	(0.109)
	R^2	0.461	0.420	0.274
	1 st Stage F-statistic	25.06	25.06	25.06
	Motorway sector	Yes	Yes	Yes
	Year	Yes	Yes	Yes
	Observations	777	777	777

IV: 2nd Stage & OLS

Table 7: 2nd Stage and OLS regressions with clustered standard errors. ***, **, and * denote significance at 1%, 5%, and 10% level

2 nd Stage	Dependent variable	log (ACCIDENTS)	log (INJURED)	log (FATALITIES)
	lag(COVERAGE)	-0.371	-0.340	-0.130
	- ((0.239)	(0.237)	(0.501)
	R^2	0.446	0.406	0.281
OLS	Dependent variable	log (ACCIDENTS)	log (INJURED)	log (FATALITIES)
	lag(COVERAGE)	-0.138** (0.0586)	-0.108* (0.0597)	-0.440*** (0.139)
	R^2	0.463	0.421	0.289
	1 st Stage F-statistic	25.06	25.06	25.06
	Motorway sector	Yes	Yes	Yes
	Year	Yes	Yes	Yes
	Observations	777	777_	777

Final remarks

Conclusions

- OLS estimates suggest a positive correlation between Safety Tutor and highway accidents reduction (but much lower with respect to previous studies).
- By controlling for additional endogeneity issues through an IV strategy, 2SLS estimates show no evidence of a significant causal effect of Safety Tutor on preventing none of the accident categories analyzed (informative only for the subsample of "complier" motorway sectors).

Limitations

- Possible measurement error
- Possible spillover effect
- IV exclusion restriction

To-Dos

- Add controls (Roadway capacity, Average age of drivers)
- Add spatial information
- Add robustness checks (DID, Poisson regressions)

Thank you

mattia.borsati@unitn.it

Figure 8: Heterogeneity of ACCIDENTS rates across motorway sectors

Figure 9: Heterogeneity of ACCIDENTS rates across years

IV Robustness (no outliers): 1st Stage & Reduced Form

Table 8: 1st Stage and Reduced Form regressions with clustered standard errors. ***, **, and * denote significance at 1%, 5%, and 10% level

1 st Stage	Dependent variable	lag (COVERAGE)	lag (COVERAGE)	lag (COVERAGE)
	lag(INSTRUMENT)	0.194***	0.194***	0.194***
	,	0.0397	0.0397	0.0397
	R^2	0.338	0.338	0.338
Reduced Form	Dependent variable	log (ACCIDENTS)	log (INJURED)	log (FATALITIES)
	lag(INSTRUMENT)	-0.0717 (0.0528)	-0.0732 (0.0523)	0.0340 (0.107)
	R^2	0.529	0.459	0.282
	1 st Stage F-statistic	23.84	23.84	23.84
	Motorway sector	Yes	Yes	Yes
	Year	Yes	Yes	Yes
	Observations	700	700	700

IV Robustness (no outliers): 2nd Stage & OLS

Table 9: 2nd Stage and OLS regressions with clustered standard errors. ***, **, and * denote significance at 1%, 5%, and 10% level

2 nd Stage	Dependent variable	log (ACCIDENTS)	log (INJURED)	log (FATALITIES)
	lag(COVERAGE)	-0.370	-0.377	0.176
	,	(0.283)	(0.283)	(0.539)
	R^2	0.511	0.440	0.269
OLS	Dependent variable	log (ACCIDENTS)	log (INJURED)	log (FATALITIES)
	lag(COVERAGE)	-0.123*	-0.108	-0.456***
	- ((0.0666)	(0.0719)	(0.154)
	R^2	0.530	0.459	0.295
	1 st Stage F-statistic	23.84	23.84	23.84
	Motorway sector	Yes	Yes	Yes
	Year	Yes	Yes	Yes
	Observations	700	700_	700